Kinetics of the Opening and Closing of Individual Excitability-Inducing Material Channels in a Lipid Bilayer

نویسندگان

  • Gerald Ehrenstein
  • Robert Blumenthal
  • Ramon Latorre
  • Harold Lecar
چکیده

The kinetics of the opening and closing of individual ion-conducting channels in lipid bilayers doped with small amounts of excitability-inducing material (EIM) are determined from discrete fluctuations in ionic current. The kinetics for the approach to steady-state conductance during voltage clamp are determined for lipid bilayers containing many EIM channels. The two sets of measurements are found to be consistent, verifying that the voltage-dependent conductance of the many-channel EIM system arises from the opening and closing of individual EIM channels. The opening and closing of the channels are Poisson processes. Transition rates for these processes vary exponentially with applied potential, implying that the energy difference between the open and closed states of an EIM channel is linearly proportional to the transmembrane electric field. A model incorporating the above properties of the EIM channels predicts the observed voltage dependence of ionic conductance and conductance relaxation time, which are also characteristic of natural electrically excitable membranes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Nature of the Negative Resistance in Bimolecular Lipid Membranes Containing Excitability-Inducing Material

When sufficiently small amounts of excitability-inducing material (EIM) are added to a bimolecular lipid membrane, the conductance is limited to a few discrete levels and changes abruptly from one level to another. From our study of these fluctuations, we have concluded that the EIM-doped bilayer contains ion-conducting channels capable of undergoing transitions between two states of different ...

متن کامل

Ion Transport Through Excitability-Inducing Material (EIM) Channels in Lipid Bilayer Membranes

Two different methods were used to determine the relative permeability and the voltage-dependent conductance of several different cations in excitability-inducing material (EIM)-doped lipid bilayers. In one method, the conductances of individual channels were measured for Li, Na, K, Cs, NH(4), and Ca, and in the other method biionic potentials of a membrane with many channels were measured for ...

متن کامل

Evidences for a new cation channel in the brain mitochondrial inner membrane

Introduction: Previous studies and our works have indicated several cation channels in the rat brain mitochondrial inner membrane. In this work, we report the single-channel characterization of a cation channel from the rat brain mitochondrial inner membrane incorporated into a planar lipid bilayer. Methods: After removing and homogenizing the adult rat brain, its supernatant was centrifuged...

متن کامل

An evidence for a potassium channel in endoplasmic reticulum based on single channel recording in bilayer lipid membrane

Introduction Numerous studies have demonstrated the presence of potassium selective channels in membranes internal organelles. These channels are essential to a large variety of cellular processes including intracellular 2+ a signaling, protein recycling, charge neutralization and cell protection. In contrast to the sarcoplasmic reticulum + here potassium channels have been clearly ...

متن کامل

Voltage-Gated Channel Mechanosensitivity: Fact or Friction?

The heart is a continually active pulsatile fluid pump. It generates appropriate forces by precisely timed and spaced engagement of its contractile machinery. Largely, it makes its own control signals, the most crucial of which are precisely timed and spaced fluxes of ions across the sarcolemma, achieved by the timely opening and closing of diverse voltage-gated channels (VGC). VGCs have four v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 63  شماره 

صفحات  -

تاریخ انتشار 1974